FACULTY OF ENGINEERING

B.E. (AICTE) I – Semester(Common for All Branches) (Main & Backlog)
Examinations, March / April 2022
Subject: Mathematics - I

Subject: Mathematics - I

Max. Marks: 70

Note: (i) First question is compulsory and answer any four questions from the remaining six questions. Each Question carries 14 Marks.

- (ii) Answer to each question must be written at one place only and in the same order as they occur in the question paper.
- (iii) Missing data, if any, may be suitably assumed.

١.

Time: 3 Hours

- (a) Discuss the convergence of the series $\sum \frac{1}{n^2}$.
- (b) Obtain the fourth degree Taylor's polynomial approximation to $f(x) = e^{2x}$ about x = 0.
- (c) Show that the following function f(x, y) is continuous at the point (0,0).

$$f(x,y) = \begin{cases} \frac{2x(x^2-y^2)}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

- (d) Evaluate the double integral $\iint_R e^{x^2} dx dy$, where the region R is given by $R: 2y \le x \le 2$ and $0 \le y \le 1$.
- (e) Find the directional derivative of $f(x, y, z) = xy^2 + 4xyz + z^2$ at the point (1,2,3) in the direction of 3i+4j-5k.
- (f) If r = xi + yj + zk and r = |r| show that $div\left(\frac{r}{r^3}\right) = 0$.
- 2. (a) Examine the convergence or divergence of the following series: $\sum \frac{x^{n+1}}{(n+1)\sqrt{n}}$
 - (b) Test the convergence of the series $\sum_{(2n-2)!}^{(-1)^{n-1}}$
- 3. (a) Obtain the Taylor's polynomial approximation of degree n to the function $f(x) = e^x$ about the point x = 0.
 - (b) Using Lagrange mean value theorem, show that $1 + x < e^x < 1 + xe^x$.
- 4. (a) If $f(x,y) = \tan^{-1}(xy)$, find an approximate value of f(1.1,0.8) using the Taylor's series (i) linear approximation and (ii) quadratic approximation.
 - (b) Find the shortest distance between the line y = 10 2x and the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- 5. (a) Evaluate the integral $\iiint_R (x^2y) dx dy dz$, where the boundary R: $x^2 + y^2 \le 1$, $0 \le z \le 1$.
 - (b) Evaluate the integral $\iiint_R (2x y z) dx dy dz$, where the boundary R: $0 \le x \le 1, 0 \le y \le x^2, 0 \le z \le x + y$.

- 6. (a) Find the work done by the force F = (x² y³)t + (x + y)f in moving a particle along the closed path C containing the curves x + y = 0, x² + y² = 16 and y = x in the first and fourth quadrants.
 - (b) Let D be the region bounded by the closed cylinder $x^2 + y^2 = 16$, z = 0 and z = 4. Verify the divergence theorem if $v = 3x^2l + 6y^2j + zk$.
- 7. (a) Evaluate the surface integral $\iint_S F. n \, dA$ where $F = 6z \, i + 6j + 3yk$ and S is the portion of the plane 2x + 3y + 4z = 12, which is in the first octant.
 - (b) Evaluate the integral $\iint_S (\nabla \times \mathbf{v}) \cdot \mathbf{n} \, dA$ by Stoke's theorem where $\mathbf{v} = (\mathbf{x}^2 \mathbf{y}^2)\mathbf{i} + (\mathbf{y}^2 \mathbf{x}^2)\mathbf{j} + z\mathbf{k}$ and S is the portion of the surface $\mathbf{x}^2 + \mathbf{y}^2 2b\mathbf{y} + b\mathbf{x} = 0$, b constant, whose boundary lies in the x-y plane.